5,425 research outputs found

    SOAREX-8 Suborbital Experiments 2015 - A New Paradigm for Small Spacecraft Communication

    Get PDF
    In 2015 NASA plans to launch a payload to 280 Km altitude on a sounding rocket from the Wallops Flight Facility. This payload will contain several novel technologies that work together to demonstrate methodologies for space sample return missions and for nanosatellite communications in general. The payload will deploy and test an Exo-Brake, which slows the payload aerodynamically, providing eventual de-orbit and recovery of future ISS samples through a Small Payload Quick Return project. In addition, this flight addresses future Mars mission entry technology, space-to-space communications using the Iridium Short Messaging Service (SMS), GPS tracking, and wireless sensors using the ZigBee protocol. SOAREX-8 is being assembled and tested at Ames Research Center (ARC) and the NASA Engineering and Safety Center (NESC) is funding sensor and communications work. Open source Arduino technology and software are used for system control. The ZigBee modules used are XBee units that connect analog sensors for temperature, air pressure and acceleration measurement wirelessly to the payload telemetry system. Our team is developing methods for power distribution and module mounting, along with software for sensor integration, data assembly and downlink. We have demonstrated relaying telemetry to the ground using the Iridium satellite constellation on a previous flight, but the upcoming flight will be the first time we integrate useful flight test data from a ZigBee wireless sensor network. Wireless sensor data will measure the aerodynamic efficacy of the Exo-Brake permitting further on orbit flight tests of improved designs. The Exo-Brake is 5 sq m in area and will be stored in a container and deployed during ascent once the payload is jettisoned from the launch vehicle. We intend to further refine the hardware and continue testing on balloon launches, future sounding rocket flights and on nanosatellite missions. The use of standards-based and open source hardware/software has allowed for this project to be completed with a very modest budget and a challenging schedule. There is a wealth of hardware and software available for both the Arduino platform and the XBee, all low-cost or open-source. Along with the Exo-Brake hardware and deployment discussion, this paper will describe in detail the system architecture emphasizing the successful use of open source hardware and software to minimize effort and cost. Testing procedures, radio frequency interference (RFI) mitigation, success criteria and expected results will also be discussed. The use of Iridium short messaging capability for space-to-space links, standards-based wireless sensor networks, and other innovative communications technology are also presented

    Advances in Cartilage Tissue Engineering Using Bioinks with Decellularized Cartilage and Three-Dimensional Printing

    Get PDF
    Osteoarthritis, a chronic, debilitating, and painful disease, is one of the leading causes of disability and socioeconomic burden, with an estimated 250 million people affected worldwide. Currently, there is no cure for osteoarthritis and treatments for joint disease require improvements. To address the challenge of improving cartilage repair and regeneration, three-dimensional (3D) printing for tissue engineering purposes has been developed. In this review, emerging technologies are presented with an overview of bioprinting, cartilage structure, current treatment options, decellularization, bioinks, and recent progress in the field of decellularized extracellular matrix (dECM)–bioink composites is discussed. The optimization of tissue engineering approaches using 3D-bioprinted biological scaffolds with dECM incorporated to create novel bioinks is an innovative strategy to promote cartilage repair and regeneration. Challenges and future directions that may lead to innovative improvements to currently available treatments for cartilage regeneration are presented

    Hybrid Mobile Communication Networks for Planetary Exploration

    Get PDF
    A paper discusses the continuing work of the Mobile Exploration System Project, which has been performing studies toward the design of hybrid communication networks for future exploratory missions to remote planets. A typical network could include stationary radio transceivers on a remote planet, mobile radio transceivers carried by humans and robots on the planet, terrestrial units connected via the Internet to an interplanetary communication system, and radio relay transceivers aboard spacecraft in orbit about the planet. Prior studies have included tests on prototypes of these networks deployed in Arctic and desert regions chosen to approximate environmental conditions on Mars. Starting from the findings of the prior studies, the paper discusses methods of analysis, design, and testing of the hybrid communication networks. It identifies key radio-frequency (RF) and network engineering issues. Notable among these issues is the study of wireless LAN throughput loss due to repeater use, RF signal strength, and network latency variations. Another major issue is that of using RF-link analysis to ensure adequate link margin in the face of statistical variations in signal strengths

    Gas Condensation in the Galactic Halo

    Full text link
    Using adaptive mesh refinement (AMR) hydrodynamic simulations of vertically stratified hot halo gas, we examine the conditions under which clouds can form and condense out of the hot halo medium to potentially fuel star formation in the gaseous disk. We find that halo clouds do not develop from linear isobaric perturbations. This is a regime where the cooling time is longer than the Brunt-Vaisala time, confirming previous linear analysis. We extend the analysis into the nonlinear regime by considering mildly or strongly nonlinear perturbations with overdensities up to 100, also varying the initial height, the cloud size, and the metallicity of the gas. Here, the result depends on the ratio of cooling time to the time required to accelerate the cloud to the sound speed (similar to the dynamical time). If the ratio exceeds a critical value near unity, the cloud is accelerated without further cooling and gets disrupted by Kelvin-Helmholtz and/or Rayleigh-Taylor instabilities. If it is less than the critical value, the cloud cools and condenses before disruption. Accreting gas with overdensities of 10-20 is expected to be marginally unstable; the cooling fraction will depend on the metallicity, the size of the incoming cloud, and the distance to the galaxy. Locally enhanced overdensities within cold streams have a higher likelihood of cooling out. Our results have implications on the evolution of clouds seeded by cold accretion that are barely resolved in current cosmological hydrodynamic simulations and absorption line systems detected in galaxy halos.Comment: 13 pages, 8 figures, submitted to Ap

    Software Architecture of Sensor Data Distribution In Planetary Exploration

    Get PDF
    Data from mobile and stationary sensors will be vital in planetary surface exploration. The distribution and collection of sensor data in an ad-hoc wireless network presents a challenge. Irregular terrain, mobile nodes, new associations with access points and repeaters with stronger signals as the network reconfigures to adapt to new conditions, signal fade and hardware failures can cause: a) Data errors; b) Out of sequence packets; c) Duplicate packets; and d) Drop out periods (when node is not connected). To mitigate the effects of these impairments, a robust and reliable software architecture must be implemented. This architecture must also be tolerant of communications outages. This paper describes such a robust and reliable software infrastructure that meets the challenges of a distributed ad hoc network in a difficult environment and presents the results of actual field experiments testing the principles and actual code developed

    The Fate of High-Velocity Clouds: Warm or Cold Cosmic Rain?

    Get PDF
    We present two sets of grid-based hydrodynamical simulations of high-velocity clouds (HVCs) traveling through the diffuse, hot Galactic halo. These HI clouds have been suggested to provide fuel for ongoing star formation in the Galactic disk. The first set of models is best described as a wind-tunnel experiment in which the HVC is exposed to a wind of constant density and velocity. In the second set of models we follow the trajectory of the HVC on its way through an isothermal hydrostatic halo towards the disk. Thus, we cover the two extremes of possible HVC trajectories. The resulting cloud morphologies exhibit a pronounced head-tail structure, with a leading dense cold core and a warm diffuse tail. Morphologies and velocity differences between head and tail are consistent with observations. For typical cloud velocities and halo densities, clouds with H{\small{I}} masses <104.5< 10^{4.5} M⊙_\odot will lose their H{\small{I}} content within 10 kpc or less. Their remnants may contribute to a population of warm ionized gas clouds in the hot coronal gas, and they may eventually be integrated in the warm ionized Galactic disk. Some of the (still over-dense, but now slow) material might recool, forming intermediate or low velocity clouds close to the Galactic disk. Given our simulation parameters and the limitation set by numerical resolution, we argue that the derived disruption distances are strong upper limits.Comment: 12 pages, 8 figures, accepted by Ap

    Head-Tail Clouds: Drops to Probe the Diffuse Galactic Halo

    Full text link
    A head-tail high-velocity cloud (HVC) is a neutral hydrogen halo cloud that appears to be interacting with the diffuse halo medium as evident by its compressed head trailed by a relatively diffuse tail. This paper presents a sample of 116 head-tail HVCs across the southern sky (d < 2 deg) from the HI Parkes All Sky Survey (HIPASS) HVC catalog, which has a spatial resolution of 15.5 arcmin (45 pc at 10 kpc) and a sensitivity of N_HI=2 x 10^(18) cm^(-2) (5 sigma). 35% of the HIPASS compact and semi-compact HVCs (CHVCs and :HVCs) can be classified as head-tail clouds from their morphology. The clouds have typical masses of 730 M_sun at 10 kpc (26,000 M_sun at 60 kpc) and the majority can be associated with larger HVC complexes given their spatial and kinematic proximity. This proximity, together with their similar properties to CHVCs and :HVCs without head-tail structure, indicate the head-tail clouds have short lifetimes, consistent with simulation predictions. Approximately half of the head-tail clouds can be associated with the Magellanic System, with the majority in the region of the Leading Arm with position angles pointing in the general direction of the movement of the Magellanic System. The abundance in the Leading Arm region is consistent with this feature being closer to the Galactic disk than the Magellanic Stream and moving through a denser halo medium. The head-tail clouds will feed the multi-phase halo medium rather than the Galactic disk directly and provide additional evidence for a diffuse Galactic halo medium extending to at least the distance of the Magellanic Clouds.Comment: MNRAS Accepted, 10 figures, 7 in colo

    Comprehensive molecular characterisation of epilepsy-associated glioneuronal tumours

    Get PDF
    Glioneuronal tumours are an important cause of treatment-resistant epilepsy. Subtypes of tumour are often poorly discriminated by histological features and may be difficult to diagnose due to a lack of robust diagnostic tools. This is illustrated by marked variability in the reported frequencies across different epilepsy surgical series. To address this, we used DNA methylation arrays and RNA sequencing to assay the methylation and expression profiles within a large cohort of glioneuronal tumours. By adopting a class discovery approach, we were able to identify two distinct groups of glioneuronal tumour, which only partially corresponded to the existing histological classification. Furthermore, by additional molecular analyses, we were able to identify pathogenic mutations in BRAF and FGFR1, specific to each group, in a high proportion of cases. Finally, by interrogating our expression data, we were able to show that each molecular group possessed expression phenotypes suggesting different cellular differentiation: astrocytic in one group and oligodendroglial in the second. Informed by this, we were able to identify CCND1, CSPG4, and PDGFRA as immunohistochemical targets which could distinguish between molecular groups. Our data suggest that the current histological classification of glioneuronal tumours does not adequately represent their underlying biology. Instead, we show that there are two molecular groups within glioneuronal tumours. The first of these displays astrocytic differentiation and is driven by BRAF mutations, while the second displays oligodendroglial differentiation and is driven by FGFR1 mutations

    Tropical summer induces DNA fragmentation in boar spermatozoa: implications for evaluating seasonal infertility

    Get PDF
    Summer infertility continues to undermine pig productivity, costing the pig industry millions in annual losses. The boar’s inefficient capacity to sweat, non-pendulous scrotum and the extensive use of European breeds in tropical conditions, can make the boar particularly vulnerable to the effects of heat stress; however, the link between summer heat stress and boar sperm DNA damage has not yet been demonstrated. Semen from five Large White boars was collected and evaluated during the early dry, late dry and peak wet seasons to determine the effect of seasonal heat stress on the quality and DNA integrity of boar spermatozoa. DNA damage in spermatozoa during the peak wet was 16-fold greater than during the early dry and nearly 9-fold greater than during the late dry season. Sperm concentration was 1.6-fold lower in the peak wet than early dry whereas no difference was found across several motility parameters as determined by computer-assisted sperm analysis. These results demonstrate that tropical summer (peak wet season) induces DNA damage and reduces concentration without depressing motility in boar spermatozoa, suggesting that traditional methods of evaluating sperm motility may not detect inherently compromised spermatozoa. Boar management strategies (such as antioxidant supplementation) need to be developed to specifically mitigate this problem

    Oxygen therapy for acute myocardial infarction

    Get PDF
    Background Oxygen (O2) is widely used in people with acute myocardial infarction (AMI) although it has been suggested it may do more harm than good. Previous systematic reviews have concluded that there was insufficient evidence to know whether oxygen reduced, increased or had no effect on heart ischaemia or infarct size, as did our original Cochrane review on this topic in 2010. The wide dissemination of the lack of evidence to support this widely-used intervention since 2010 may stimulate the needed trials of oxygen therapy, and it is therefore important that this review is updated regularly. Objectives To review the evidence from randomised controlled trials to establish whether routine use of inhaled oxygen in acute myocardial infarction (AMI) improves patient-centred outcomes, in particular pain and death. Search methods The following bibliographic databases were searched last in July 2012: the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library), MEDLINE (OVID), EMBASE (OVID), CINAHL (EBSCO) and Web of Science (ISI). LILACS (Latin American and Caribbean Health Sciences Literature) and PASCAL were last searched in May 2013. We also contacted experts to identify any studies. We applied no language restrictions. Selection Criteria Randomised controlled trials of people with suspected or proven AMI (ST-segment elevation myocardial infarction (STEMI) or non-STEMI), less than 24 hours after onset, in which the intervention was inhaled oxygen (at normal pressure) compared to air and regardless of cotherapies provided these were the same in both arms of the trial. Data collection and analysis Two authors independently reviewed the titles and abstracts of identified studies to see if they met the inclusion criteria, and independently undertook the data extraction. The quality of studies and the risk of bias were assessed according to guidance in the Cochrane Handbook. The primary outcomes were death, pain and complications. The measure of effect used was the risk ratio (RR) with a 95% confidence interval (CI). Main results The updated search identified one new trial. In total, four trials involving 430 participants were included and 17 deaths occurred. The pooled RR of death was 2.05 (95% CI 0.75 to 5.58) in an intention-to-treat analysis and 2.11 (95% CI 0.78 to 5.68) in participants with confirmed AMI. While suggestive of harm, the small number of deaths recorded means that this could be a chance occurrence. Pain was measured by analgesic use. The pooled RR for the use of analgesics was 0.97 (95% CI 0.78 to 1.20). Author's conclusions There is no conclusive evidence from randomised controlled trials to support the routine use of inhaled oxygen in people with AMI. A definitive randomised controlled trial is urgently required, given the mismatch between trial evidence suggestive of possible harm from routine oxygen use and recommendations for its use in clinical practice guidelines
    • …
    corecore